История создания и принцип работы динамомашины

В 1831 году английский физик Михаил Фарадей открыл очень интересное явление и вывел из него закон электро­магнитной индукции. Сущность электромагнитной индукции заключается в том, что в медном проводе, если его вращать в неоднородном магнитном поле, то-есть между полюсами магнита или электромагнита, возникает электромагнитное поле. Электромагнитное поле возбуждает движение электро­нов, и по проводнику начинает течь электрический ток.
Но откуда же появилось электромагнитное поле и элек­трический ток, спросите вы, если у нас находится только обыкновенная медная проволока, намотанная на металличе­ский стержень?
Дело в том, что металлический стержень обладает маг­нитным свойством. Но пока стержень этот—немагнитный, потому что магнитные частицы расположены в нем неупорядо­ченно, как попало. Если эти магнитные частицы привести в порядок, то-есть расположить согласно магнитным полюсам, то стержень приобретает свойство магнита и будет притяги­вать к себе металлические предметы. Такое упорядочение магнитных сил можно произвести путем намагничивания стержня постоянным магнитом или электрическим током с помощью катушки. Можно это сделать и с помощью силь­ного вращения одного электромагнита вокруг другого.

В 1831 году английский физик Михаил Фарадей открыл очень интересное явление и вывел из него закон электро­магнитной индукции. Сущность электромагнитной индукции заключается в том, что в медном проводе, если его вращать в неоднородном магнитном поле, то-есть между полюсами магнита или электромагнита, возникает электромагнитное поле. Электромагнитное поле возбуждает движение электро­нов, и по проводнику начинает течь электрический ток.
Но откуда же появилось электромагнитное поле и элек­трический ток, спросите вы, если у нас находится только обыкновенная медная проволока, намотанная на металличе­ский стержень?
Дело в том, что металлический стержень обладает маг­нитным свойством. Но пока стержень этот—немагнитный, потому что магнитные частицы расположены в нем неупорядо­ченно, как попало. Если эти магнитные частицы привести в порядок, то-есть расположить согласно магнитным полюсам, то стержень приобретает свойство магнита и будет притяги­вать к себе металлические предметы. Такое упорядочение магнитных сил можно произвести путем намагничивания стержня постоянным магнитом или электрическим током с помощью катушки. Можно это сделать и с помощью силь­ного вращения одного электромагнита вокруг другого.
В стержне электромагнита всегда имеются слабые следы магнетизма, которые возбуждают в обмотках слабый электри­ческий ток. А когда начинают вращать один электромагнит вокруг другого, электромагнит намагничивается еще силь­нее, а усиление магнитных сил увеличивает ток в обмот­ках и т. д. Таким образом при наибольшей скорости вра­щения электромагнита ток в обмотке достигает полной силы. Собранный при помощи специального устройства, называемого коллектором, электрический ток направляется во внешнюю электрическую цепь. Следовательно напряже­ние, даваемое таким устройством, зависит от магнитной способности сердечника, скорости вращения и длины обмот­ки электромагнита. Но практическое применение этого зако­на сначала пошло не по линии создания производителя электроэнергии, а по линии ее потребителя—электромотора.
Вскоре после открытия Фарадеем закона электромагнит­ной индукции, в том же 1831 году, был построен первый прибор, преобразующий электрическую энергию в механи­ческую. Следует заметить, что Фарадей, открыв явление электромагнитной индукции, еще не создал электродвигателя.
Первые изобретатели электродвигателей придерживались при их конструировании принципов работы паровых машин.
Так, один из первых конструкторов электродвигателя—Бур-буз сделал точную копию паровой машины, заменив цилин­дры электромагнитами, а поршни—металлическими якорями. Переключатель напряжения — современный коллектор—также был выполнен в виде золотниковой коробки паровой маши­ны. Такой двигатель представлял собой две пары электро­магнитов, между которыми была установлена стойка с коро­мыслом. На коромысле помещались якоря, и в то же время коромысло было соединено системой рычагов с маховиком. От кулачка маховика шел шток к переключателю в виде зо­лотниковой коробки. При включении тока одна пара электро­магнитов притягивала к себе якорь, приводя в движение рычаги и поворачивая маховик. При притяжении якоря к пер­вой паре электромагнитов, шток переключателя переводил ползун и, разрывая действующую цепь, включал тут же цепь второго электромагнита. Второй якорь притягивался ко вто­рой паре электромагнитов, рычаги перемещались и вращали маховик дальше.
Первые электродвигатели, действовавшие по принципу так называемого возвратно-поступательного движения, были очень слабы и не могли быть практически применены. Но уже в 1834 году русский академик Борис Семенович Якоби, который открыл гальванопластику, построил первый электро­двигатель без возвратно-поступательного движения. В его двигателе рабочая часть, то-есть якорь, совершала враща­тельное движение, как и в современном электромоторе.
Первый электромотор Якоби был очень прост по устрой­ству: над электромагнитами устанавливалась горизонтальная оеь с насаженными на нее деревянными кругами, в которые по окружности были вставлены металлические стержни. На конце оси была прикреплена металлическая звездочка с коли­чеством зубцов, равным количеству металлических стержней якоря. К звездочке приставлялась пружина, которая при вращении якоря поочередно касалась зубцов звездочки и тем самым периодически включала напряжение в обмотку электро­магнита, а последний, поочередно притягивая стержни якоря, вращал его на оси.
Позднее, в 1838 году, Якоби сконструировал электродви­гатель, который сам же практически применил на первой в мире электромоторной лодке. Этот двигатель состоял из 4 электромагнитов статора и 4 электромагнитов ротора. Ввиду того, что Якоби в этом двигателе на роторе-якоре применил тоже электромагниты, мотор обладал уже практической мощностью.
Занимаясь дальнейшими исследованиями и усовершенство­ваниями своего электродвигателя, Якоби заметил, что если, прилагая механическую силу, вращать якорь его электродви­гателя, то в обмотках возникает электрический ток и таким образом электродвигатель из потребителя электроэнергии превращается в ее производителя. Это было новое открытие русского ученого, которое послужило началом создания гене­ратора электрической энергии—динамомашины. Таким обра­зом были намечены пути прямого применения закона электро­магнитной индукции, открытого Фарадеем, о чем уже гово­рилось в начале этого раздела.
Совместно с известным ученым Ленцем, Якоби определил основные законы электрического тока и принципы, на кото­рых действуют электродвигатели.
Эти новые открытия в области применения электричества Фридрих Энгельс определил так: „…Это колоссальная рево­люция. Паровая машина научила нас превращать тепло в механическое движение, но использование электричества от­кроет нам путь к тому, чтобы превращать все виды энергии— теплоту, механическое движение, электричество, магнетизм, свет—одну в другую и обратно и применять их в промыш­ленности (Маркс и Энгельс, соч., т. XXVII, стр. 289.)
Благодаря усовершенствованию электродвигателей мы уже имеем возможность преобразовывать любые виды энергии одна в другую и с успехом использовать все виды энергии для развития социалистического народного хозяйства.
Исключительно много сделали в области усовершенство­вания электродвигателей и генераторов, а также в области магнитологии русские и, в частности, советские ученые.
С момента зарождения электротехники очень много вни­мания уделялось исследованию магнитных свойств железа, так как оно являлось основным строительным материалом электродвигателей и от его магнитных свойств зависел успех работы нового двигателя. Замечательные исследования рус­ского ученого Александра Григорьевича Столетова, произве­денные в 1872 году, явились законополагающими в этой области. Он установил, что магнитная проницаемость желе­за—величина непостоянная. Она изменяется в зависимости от структуры железа и степени его намагничивания. Выве­денные из этого научные расчеты Столетовым и по настоя­щее время применяются учеными и инженерами при конст­руировании электродвигателей.
Русский электротехник Павел Николаевич Яблочков (1847— 1894), изобретатель первой дуговой электрической лампы, первый построил якорь электромотора барабанного типа^ который является самой совершенной конструкцией. П. Н.Яб­лочков первым в мире построил и альтернатор—генератор переменного тока, который применяется теперь на всех электростанциях.
Революцию в области получения электроэнергии произвел своим изобретением генератора трехфазного тока в 1890 году русский ученый М. О. Доливо-Добровольский.
Большой вклад в развитие магнитологии—науки о магни­тах и магнитных явлениях—внес советский ученый-магни­толог, действительный член Академии наук СССР, лауреат Сталинской премии Николай Сергеевич Акулов. Он открыл важный закон, известный как закон Акулова. Пользуясь этим законом, можно заранее определить, как при намагни­чивании отдельных металлов изменяется их электропровод­ность, теплопроводность и другие качества.